


 Multiversion schemes keep old versions of data 
item to increase concurrency. 
◦ Multiversion Timestamp Ordering 
◦ Multiversion Two-Phase Locking 

 Each successful write results in the creation of a 
new version of the data item written. 

 Use timestamps to label versions. 
 When a read(Q) operation is issued, select an 

appropriate version of Q based on the timestamp 
of the transaction, and return the value of the 
selected version.   

 reads never have to wait as an appropriate 
version is returned immediately. 



 Each data item Q has a sequence of versions 
<Q1, Q2,...., Qm>. Each version Qk contains three 
data fields: 
◦ Content -- the value of version Qk. 
◦ W-timestamp(Qk) -- timestamp of the transaction that 

created (wrote) version Qk 
◦ R-timestamp(Qk) -- largest timestamp of a transaction 

that successfully read version Qk 

 when a transaction Ti creates a new version Qk of 
Q, Qk's W-timestamp and R-timestamp are 
initialized to TS(Ti).  

 R-timestamp of Qk is updated whenever a 
transaction Tj reads Qk, and TS(Tj) > R-
timestamp(Qk). 



 The multiversion timestamp scheme presented next ensures 
serializability.  

 Suppose that transaction Ti issues a read(Q) or write(Q) operation.  Let Qk 

denote the version of Q whose write timestamp is the largest write 

timestamp less than or equal to TS(Ti). 

  1.  If transaction Ti issues a read(Q), then the value returned is the        
       content of version Qk. 

  2.  If transaction Ti issues a  write(Q), and if TS(Ti) < R- 
       timestamp(Qk), then transaction Ti is rolled  
       back. Otherwise,  if TS(Ti) = W-timestamp(Qk), the contents of Qk  
       are overwritten, otherwise a new version of Q is created. 

 Reads always succeed; a write by Ti is rejected if some other transaction 
Tj that (in the serialization order defined by the timestamp values) should 
read Ti's write, has already read a version created by a transaction older 
than Ti. 



 Differentiates between read-only transactions and 
update transactions 

 Update transactions acquire read and write locks, 
and hold all locks up to the end of the transaction. 
That is, update transactions follow rigorous two-
phase locking. 
◦ Each successful write results in the creation of a new 

version of the data item written. 
◦ each version of a data item has a single timestamp 

whose value is obtained from a counter ts-counter that 
is incremented during commit processing. 

 Read-only transactions are assigned a timestamp 
by reading the current value of  ts-counter before 
they start execution; they follow the multiversion 
timestamp-ordering protocol for performing 
reads. 



 When an update transaction wants to read a data item, 
it obtains a shared lock on it, and reads the latest 
version.  

 When it wants to write an item, it obtains X lock on; it 
then creates a new version of the item and sets this 
version's timestamp to . 

 When update transaction Ti completes, commit 
processing occurs: 
◦ Ti sets timestamp on the versions it has created to  ts-counter 

+ 1 
◦ Ti increments  ts-counter by 1 

 Read-only transactions that start after Ti increments ts-
counter will see the values updated by Ti.  

 Read-only transactions that start before Ti increments 
the 
ts-counter will see the value before the updates by Ti.  

 Only serializable schedules are produced. 



 Consider the following two transactions: 

             T1:     write (X)               T2:    write(Y) 

                      write(Y)                         write(X) 

 Schedule with deadlock 
T1 T2 

lock-X on X 

write (X)  
lock-X on Y 

write (X)   

wait for lock-X on X 

wait for lock-X on Y 



 System is deadlocked if there is a set of 
transactions such that every transaction in the set 
is waiting for another transaction in the set. 

 Deadlock prevention protocols ensure that the 
system will never enter into a deadlock state. Some 
prevention strategies : 
◦ Require that each transaction locks all its data items 

before it begins execution (predeclaration). 
◦ Impose partial ordering of all data items and require that 

a transaction can lock data items only in the order 
specified by the partial order (graph-based protocol). 



 Following schemes use transaction timestamps 
for the sake of deadlock prevention alone. 

 wait-die scheme — non-preemptive 
◦ older transaction may wait for younger one to release 

data item. Younger transactions never wait for older 
ones; they are rolled back instead. 

◦ a transaction may die several times before acquiring 
needed data item 

 wound-wait scheme — preemptive 
◦ older transaction wounds (forces rollback) of younger 

transaction instead of waiting for it. Younger 
transactions may wait for older ones. 

◦ may be fewer rollbacks than wait-die scheme. 



 Both in wait-die and in wound-wait schemes, a 
rolled back transactions is restarted with its 
original timestamp. Older transactions thus have 
precedence over newer ones, and starvation is 
hence avoided. 

 Timeout-Based Schemes : 
◦ a transaction waits for a lock only for a specified amount 

of time. After that, the wait times out and the 
transaction is rolled back. 

◦ thus deadlocks are not possible 

◦ simple to implement; but starvation is possible. Also 
difficult to determine good value of the timeout interval. 



 Deadlocks can be described as a wait-for graph, 
which consists of a pair G = (V,E),  
◦ V is a set of vertices (all the transactions in the system) 
◦ E is a set of edges; each element is an ordered pair Ti Tj.   

 If Ti   Tj is in E, then there is a directed edge from Ti 
to Tj, implying that Ti is waiting for Tj to release a 
data item. 

 When Ti requests a data item currently being held by 
Tj, then the edge Ti  Tj is inserted in the wait-for 
graph. This edge is removed only when Tj is no 
longer holding a data item needed by Ti. 

 The system is in a deadlock state if and only if the 
wait-for graph has a cycle.  Must invoke a deadlock-
detection algorithm periodically to look for cycles. 



Wait-for graph without a cycle Wait-for graph with a cycle 



 When deadlock is  detected : 
◦ Some transaction will have to rolled back (made a 

victim) to break deadlock.  Select that transaction 
as victim that will incur minimum cost. 

◦ Rollback -- determine how far to roll back 
transaction 
 Total rollback: Abort the transaction and then restart 

it. 

 More effective to roll back transaction only as far as 
necessary to break deadlock. 

◦ Starvation happens if same transaction is always 
chosen as victim. Include the number of rollbacks in 
the cost factor to avoid starvation 



 If two-phase locking is used : 
◦ A  delete operation may be performed only if the 

transaction deleting the tuple has an exclusive lock on the 
tuple to be deleted. 

◦ A transaction that inserts a new tuple into the database is 
given an X-mode lock on the tuple 

 Insertions and deletions can lead to the phantom 
phenomenon. 
◦ A transaction that scans a relation (e.g., find all accounts in 

Perryridge) and a transaction that inserts a tuple in the 
relation (e.g., insert a new account at Perryridge) may 
conflict in spite of not accessing any tuple in common.  

◦ If only tuple locks are used, non-serializable schedules can 
result: the scan transaction may not see the new account, 
yet may be serialized before the insert transaction. 



 The transaction scanning the relation is reading  
information that indicates what tuples the relation 
contains, while a transaction inserting a tuple updates the 
same information. 
◦  The information should be locked. 

 One solution:  
◦ Associate a data item with the relation, to represent the 

information about what tuples the relation contains. 
◦ Transactions scanning the relation acquire a shared lock in the 

data item,  
◦ Transactions inserting or deleting a tuple acquire an exclusive 

lock on the data item. (Note: locks on the data item do not conflict 
with locks on individual tuples.) 

 Above protocol provides very low concurrency for 
insertions/deletions. 

 Index locking protocols provide higher concurrency while  
preventing the phantom phenomenon, by requiring locks  
on certain index buckets.  



 Every relation must have at least one index. Access to 
a relation must be made only through one of the 
indices on the relation. 

 A transaction Ti that performs a lookup must lock all 
the index buckets that it accesses, in S-mode. 

 A transaction Ti may not insert a tuple ti into a 
relation r  without updating all indices to r. 

 Ti must perform a lookup on every index to find all 
index buckets that could have possibly contained a 
pointer to tuple ti, had it existed already, and obtain 
locks in X-mode on all these index buckets. Ti must 
also obtain locks in X-mode on all index buckets that 
it modifies. 

 The rules of the two-phase locking protocol must be 
observed. 



 Degree-two consistency: differs from two-
phase locking in that S-locks may be 
released at any time, and locks may be 
acquired at any time 
◦ X-locks must be held till end of transaction 
◦ Serializability is not guaranteed, programmer 

must ensure that no erroneous database state 
will occur] 

 Cursor stability:  
◦ For reads, each tuple is locked, read, and lock is 

immediately released 
◦ X-locks are held till end of transaction 
◦ Special case of degree-two consistency 



 SQL allows non-serializable executions 
◦ Serializable: is the default 
◦ Repeatable read: allows only committed records 

to be read, and repeating a read should return 
the same value (so read locks should be retained) 
 However, the phantom phenomenon need not be 

prevented 
 T1 may see some records inserted by T2, but may not 

see others inserted by T2 

◦ Read committed:  same as degree two 
consistency, but most systems implement it as 
cursor-stability 

◦ Read uncommitted: allows even uncommitted 
data to be read 



 Indices are unlike other database items in that their only job 
is to help in accessing data. 

 Index-structures are typically accessed very often, much 
more than other database items.  

 Treating index-structures like other database items leads to 
low concurrency.   Two-phase locking on an index may result 
in transactions executing practically one-at-a-time. 

 It is acceptable to have nonserializable concurrent access to 
an index as long as the accuracy of the index is maintained. 

 In particular, the exact values read in an internal node of a  
B+-tree are irrelevant so long as we land up in the correct leaf 
node. 

 There are index concurrency protocols where locks on 
internal nodes are released early, and not in a two-phase 
fashion. 



 Example of index concurrency protocol: 

 Use crabbing instead of two-phase locking on 
the nodes of the B+-tree, as follows.  During 
search/insertion/deletion: 
◦ First lock the root node in shared mode. 
◦ After locking all required children of a node in shared 

mode, release the lock on the node. 
◦ During insertion/deletion, upgrade leaf node locks to 

exclusive mode. 
◦ When splitting or coalescing requires changes to a 

parent, lock the parent in exclusive mode. 

 Above protocol can cause excessive deadlocks. 
Better protocols are available; see Section 16.9 
for one such protocol, the B-link tree protocol 


