Concurrency Control-
Timestamp Ordering




Multiversic
item to In

- Multiversio

Each success
new version C

Use timestamp

When a read(Q) ope
appropriate version of Q
of the transaction, and retu
selected version.

reads never have to wait as an appropriate
version is returned immediately.




» Each data
<Q]I Q yrun
data flEﬁdS.

- Content —-t

created (wrote
- R-timestamp(Q,

that successfully
» when a transaction
Q, Q. 's W-timestamp and
initialized to TS(7). R——
R-timestamp of @, is updated whenever a
transaction 7, reads @Q,, and TS(7) > R-

timestamp(Q,/().




Multiver

timestam

back. Other
are overwritt

» Reads always succ
7;that (in the serializa
read 7;s write, has already r
I




Multive‘

» Differentiat
update tra
Update tra
and hold all
That is, upd
ENE lockin
- Each successf

version of the d
- each version of a

whose value is obtai

is incremented during
Read-only transactions ar
by reading the current value o
they start execution; they follow the multlver5|on
tlmgstamp orderlng protocol for performing
reads




(a0 Tiph

it obtains a
version.
When it wan
then creates
version's tim
When update
processing oc

- T, sets timesta
=

- T,increments ts-
Read-only transact
counter will see the
Read-only transactions

the .
ts—counter will see the value be

N




» Conside
7

. Schedule

lock-X on
write (X)

wait for lock-X on X
wait for lock-X on Y




» System is d
transactions
is waiting fc
Dead/ock
system will

- Require that each
before it begins exe

- Impose partial ordering
a transaction can lock da




» Following
for the sak
» wait-die sc

- older transa
data item. Ya

ones; they are

- a transaction may
needed data item

» wounhd-wait scheme —

- older transaction wounds (forces rollbz
transaction instead of waiting for it. Younger
transactions may wait for older ones.

- may be fewer rollbacks than wait-die scheme.




Deadl

» Both in w.
rolled bac
original ti
precedence
hence avoide

» Timeout-Based

> a transaction waits
of time. After that, the w
transaction is rolled back.

- thus deadlocks are not possible
- simple to implement; but starvation is possible. Also
difficult to determine good value of the timeout interval.

:.‘.‘. ;sr\\\‘.»\ X
.!;i : ¢
W\ \




Deadl

Deadlocks
which cons

> Visaseto

- Eis a set of
If 7.—> ISE
to 7}, im|5lyin

data item.

When 7;requests
7, then the edge 7,
raph. This edge is rem

onger holding a data item n

The system is in a deadlock state if and onCI}/ if the
wait-for graph has a cycle. Must invoke a deadlock-
detection algorithm periodically to look for cycles.




Wait-for graph without a cycle Wait-for graph with a cycle




Deadl OCK

» When dez

- Some tran
victim) to [
as victim t
- Rollback ——
transaction
Total rollback: /
it.
More effective to roll bz
necessary to break deadloc Y N
- Starvation happens if same transactlon is always
chosen as victim. Include the number of rollbacks in
the cost factor to avoid starvation




Insert

» If two-pha
- A delete of
transaction
tuple to be

o A transactlo,
given an X-mc

» Insertions and ¢
phenomenon.

- A transaction that scc
Perryridge) and a transc
relation (e.g., insert a new aci
conflict in splte of not accessing ¢

- If only tuple locks are used, non-serializable schedules can
result: the scan transaction may not see the new account,
yet may be serialized before the insert transaction.




data ite

Transactio

lock on the dat:

with locks on indi
Above protocol proy
insertions/deletions.

Index Iockinﬁ protocols pro-vide‘ igher concurrency while

preventing the phantom phenomenon, by requiring locks
on certain index buckets.




Every relati
a relation m
indices on t

A transactio
the index bu

A transaction 7
relation r witho

7. must perform alc

index buckets that cot

Fomter to tuple £, had it ex
cks in X-mode on all these i

also obtain locks in X-mode on all mdex buckets that
it modifies.

The rules of the two-phase locking protocol must be
observed




Weak Levels of Consistency

» Degree-two consistency: differs from two-
phase locking in that S-locks may be
released at any time, and locks may be
acquired at any time
- X-locks must be held till end of transaction

> Serializability is not guaranteed, programmer
must ensure that no erroneous database state
will occur]

» Cursor stability:

- For reads, each tuple is locked, read, and lock is
immediately released

- X-locks are held till end of transaction
- Special case of degree-two consistency



Weak Levels of Consistency in SQL

» SQL allows non-serializable executions
- Serializable: is the default

- Repeatable read: allows only committed records
to be read, and repeating a read should return
the same value (so read locks should be retained)
- However, the phantom phenomenon need not be

prevented

- T1 may see some records inserted by T2, but may not
see others inserted by T2

- Read committed: same as degree two
consistency, but most systems implement it as
cursor-stability

- Read uncommitted: allows even uncommitted
data to be read




Indices are un
is to help in ac
Index-structu
more than oth

Treating index
low concurrenc
in transactions

It is acceptable t
an index as long c

In particular, the exa
B*-tree are irrelevant
node.

There are index concurren
internal nodes are released eat
fashion.




Concurrency
(Contal

» Example of

search/inse
- First lock the

- After locking ¢
mode, release

- During insertion/ael
exclusive mode.
- When splitting or coalescinc
parent, lock the parent in exclusiv ;
» Above protocol can cause excessive deadlocks.
Better protocols are available; see Section 16.9
for one such protocol, the B-link tree protocol




