

 Multiversion schemes keep old versions of data
item to increase concurrency.
◦ Multiversion Timestamp Ordering
◦ Multiversion Two-Phase Locking

 Each successful write results in the creation of a
new version of the data item written.

 Use timestamps to label versions.
 When a read(Q) operation is issued, select an

appropriate version of Q based on the timestamp
of the transaction, and return the value of the
selected version.

 reads never have to wait as an appropriate
version is returned immediately.

 Each data item Q has a sequence of versions
<Q1, Q2,...., Qm>. Each version Qk contains three
data fields:
◦ Content -- the value of version Qk.
◦ W-timestamp(Qk) -- timestamp of the transaction that

created (wrote) version Qk
◦ R-timestamp(Qk) -- largest timestamp of a transaction

that successfully read version Qk

 when a transaction Ti creates a new version Qk of
Q, Qk's W-timestamp and R-timestamp are
initialized to TS(Ti).

 R-timestamp of Qk is updated whenever a
transaction Tj reads Qk, and TS(Tj) > R-
timestamp(Qk).

 The multiversion timestamp scheme presented next ensures
serializability.

 Suppose that transaction Ti issues a read(Q) or write(Q) operation. Let Qk

denote the version of Q whose write timestamp is the largest write

timestamp less than or equal to TS(Ti).

 1. If transaction Ti issues a read(Q), then the value returned is the
 content of version Qk.

 2. If transaction Ti issues a write(Q), and if TS(Ti) < R-
 timestamp(Qk), then transaction Ti is rolled
 back. Otherwise, if TS(Ti) = W-timestamp(Qk), the contents of Qk
 are overwritten, otherwise a new version of Q is created.

 Reads always succeed; a write by Ti is rejected if some other transaction
Tj that (in the serialization order defined by the timestamp values) should
read Ti's write, has already read a version created by a transaction older
than Ti.

 Differentiates between read-only transactions and
update transactions

 Update transactions acquire read and write locks,
and hold all locks up to the end of the transaction.
That is, update transactions follow rigorous two-
phase locking.
◦ Each successful write results in the creation of a new

version of the data item written.
◦ each version of a data item has a single timestamp

whose value is obtained from a counter ts-counter that
is incremented during commit processing.

 Read-only transactions are assigned a timestamp
by reading the current value of ts-counter before
they start execution; they follow the multiversion
timestamp-ordering protocol for performing
reads.

 When an update transaction wants to read a data item,
it obtains a shared lock on it, and reads the latest
version.

 When it wants to write an item, it obtains X lock on; it
then creates a new version of the item and sets this
version's timestamp to .

 When update transaction Ti completes, commit
processing occurs:
◦ Ti sets timestamp on the versions it has created to ts-counter

+ 1
◦ Ti increments ts-counter by 1

 Read-only transactions that start after Ti increments ts-
counter will see the values updated by Ti.

 Read-only transactions that start before Ti increments
the
ts-counter will see the value before the updates by Ti.

 Only serializable schedules are produced.

 Consider the following two transactions:

 T1: write (X) T2: write(Y)

 write(Y) write(X)

 Schedule with deadlock
T1 T2

lock-X on X

write (X)
lock-X on Y

write (X)

wait for lock-X on X

wait for lock-X on Y

 System is deadlocked if there is a set of
transactions such that every transaction in the set
is waiting for another transaction in the set.

 Deadlock prevention protocols ensure that the
system will never enter into a deadlock state. Some
prevention strategies :
◦ Require that each transaction locks all its data items

before it begins execution (predeclaration).
◦ Impose partial ordering of all data items and require that

a transaction can lock data items only in the order
specified by the partial order (graph-based protocol).

 Following schemes use transaction timestamps
for the sake of deadlock prevention alone.

 wait-die scheme — non-preemptive
◦ older transaction may wait for younger one to release

data item. Younger transactions never wait for older
ones; they are rolled back instead.

◦ a transaction may die several times before acquiring
needed data item

 wound-wait scheme — preemptive
◦ older transaction wounds (forces rollback) of younger

transaction instead of waiting for it. Younger
transactions may wait for older ones.

◦ may be fewer rollbacks than wait-die scheme.

 Both in wait-die and in wound-wait schemes, a
rolled back transactions is restarted with its
original timestamp. Older transactions thus have
precedence over newer ones, and starvation is
hence avoided.

 Timeout-Based Schemes :
◦ a transaction waits for a lock only for a specified amount

of time. After that, the wait times out and the
transaction is rolled back.

◦ thus deadlocks are not possible

◦ simple to implement; but starvation is possible. Also
difficult to determine good value of the timeout interval.

 Deadlocks can be described as a wait-for graph,
which consists of a pair G = (V,E),
◦ V is a set of vertices (all the transactions in the system)
◦ E is a set of edges; each element is an ordered pair Ti Tj.

 If Ti Tj is in E, then there is a directed edge from Ti
to Tj, implying that Ti is waiting for Tj to release a
data item.

 When Ti requests a data item currently being held by
Tj, then the edge Ti Tj is inserted in the wait-for
graph. This edge is removed only when Tj is no
longer holding a data item needed by Ti.

 The system is in a deadlock state if and only if the
wait-for graph has a cycle. Must invoke a deadlock-
detection algorithm periodically to look for cycles.

Wait-for graph without a cycle Wait-for graph with a cycle

 When deadlock is detected :
◦ Some transaction will have to rolled back (made a

victim) to break deadlock. Select that transaction
as victim that will incur minimum cost.

◦ Rollback -- determine how far to roll back
transaction
 Total rollback: Abort the transaction and then restart

it.

 More effective to roll back transaction only as far as
necessary to break deadlock.

◦ Starvation happens if same transaction is always
chosen as victim. Include the number of rollbacks in
the cost factor to avoid starvation

 If two-phase locking is used :
◦ A delete operation may be performed only if the

transaction deleting the tuple has an exclusive lock on the
tuple to be deleted.

◦ A transaction that inserts a new tuple into the database is
given an X-mode lock on the tuple

 Insertions and deletions can lead to the phantom
phenomenon.
◦ A transaction that scans a relation (e.g., find all accounts in

Perryridge) and a transaction that inserts a tuple in the
relation (e.g., insert a new account at Perryridge) may
conflict in spite of not accessing any tuple in common.

◦ If only tuple locks are used, non-serializable schedules can
result: the scan transaction may not see the new account,
yet may be serialized before the insert transaction.

 The transaction scanning the relation is reading
information that indicates what tuples the relation
contains, while a transaction inserting a tuple updates the
same information.
◦ The information should be locked.

 One solution:
◦ Associate a data item with the relation, to represent the

information about what tuples the relation contains.
◦ Transactions scanning the relation acquire a shared lock in the

data item,
◦ Transactions inserting or deleting a tuple acquire an exclusive

lock on the data item. (Note: locks on the data item do not conflict
with locks on individual tuples.)

 Above protocol provides very low concurrency for
insertions/deletions.

 Index locking protocols provide higher concurrency while
preventing the phantom phenomenon, by requiring locks
on certain index buckets.

 Every relation must have at least one index. Access to
a relation must be made only through one of the
indices on the relation.

 A transaction Ti that performs a lookup must lock all
the index buckets that it accesses, in S-mode.

 A transaction Ti may not insert a tuple ti into a
relation r without updating all indices to r.

 Ti must perform a lookup on every index to find all
index buckets that could have possibly contained a
pointer to tuple ti, had it existed already, and obtain
locks in X-mode on all these index buckets. Ti must
also obtain locks in X-mode on all index buckets that
it modifies.

 The rules of the two-phase locking protocol must be
observed.

 Degree-two consistency: differs from two-
phase locking in that S-locks may be
released at any time, and locks may be
acquired at any time
◦ X-locks must be held till end of transaction
◦ Serializability is not guaranteed, programmer

must ensure that no erroneous database state
will occur]

 Cursor stability:
◦ For reads, each tuple is locked, read, and lock is

immediately released
◦ X-locks are held till end of transaction
◦ Special case of degree-two consistency

 SQL allows non-serializable executions
◦ Serializable: is the default
◦ Repeatable read: allows only committed records

to be read, and repeating a read should return
the same value (so read locks should be retained)
 However, the phantom phenomenon need not be

prevented
 T1 may see some records inserted by T2, but may not

see others inserted by T2

◦ Read committed: same as degree two
consistency, but most systems implement it as
cursor-stability

◦ Read uncommitted: allows even uncommitted
data to be read

 Indices are unlike other database items in that their only job
is to help in accessing data.

 Index-structures are typically accessed very often, much
more than other database items.

 Treating index-structures like other database items leads to
low concurrency. Two-phase locking on an index may result
in transactions executing practically one-at-a-time.

 It is acceptable to have nonserializable concurrent access to
an index as long as the accuracy of the index is maintained.

 In particular, the exact values read in an internal node of a
B+-tree are irrelevant so long as we land up in the correct leaf
node.

 There are index concurrency protocols where locks on
internal nodes are released early, and not in a two-phase
fashion.

 Example of index concurrency protocol:

 Use crabbing instead of two-phase locking on
the nodes of the B+-tree, as follows. During
search/insertion/deletion:
◦ First lock the root node in shared mode.
◦ After locking all required children of a node in shared

mode, release the lock on the node.
◦ During insertion/deletion, upgrade leaf node locks to

exclusive mode.
◦ When splitting or coalescing requires changes to a

parent, lock the parent in exclusive mode.

 Above protocol can cause excessive deadlocks.
Better protocols are available; see Section 16.9
for one such protocol, the B-link tree protocol

